WebIn this paper, we propose Cycle Self-Training (CST), a principled self-training algorithm that explicitly enforces pseudo-labels to generalize across domains. CST cycles between … WebOct 27, 2024 · However, it remains a challenging task for adapting a model trained in a source domain of labelled data to a target domain of only unlabelled data available. In this work, we develop a self-training method with progressive augmentation framework (PAST) to promote the model performance progressively on the target dataset.
Unsupervised Domain Adaptation with Noise Resistible …
WebRecent advances in domain adaptation show that deep self-training presents a powerful means for unsupervised domain adaptation. These methods often involve an iterative process of predicting on target domain and then taking the confident predictions as pseudo-labels for retraining. WebSelf-training is an e ective strategy for UDA in person re-ID [8,31,49,11], ... camera-aware domain adaptation to reduce the discrepancy across sub-domains in cameras and utilize the temporal continuity in each camera to provide dis-criminative information. Recently, some methods are developed based on the self-training framework. ... gree thermopompe reviews
Cycle Self-Training for Domain Adaptation - Tsinghua University
WebWe integrate a sequential self-training strategy to progressively and effectively perform our domain adaption components, as shown in Figure2. We describe the details of cross-domain adaptation in Section4.1and progressive self-training for low-resource domain adaptation in Section4.2. 4.1 Cross-domain Adaptation WebNov 13, 2024 · Abstract. The divergence between labeled training data and unlabeled testing data is a significant challenge for recent deep learning models. Unsupervised domain adaptation (UDA) attempts to solve such a problem. Recent works show that self-training is a powerful approach to UDA. However, existing methods have difficulty in … WebIn this paper, we propose Cycle Self-Training (CST), a principled self-training algorithm that explicitly enforces pseudo-labels to generalize across domains. CST cycles between a forward step and a reverse step until convergence. In the forward step, CST generates target pseudo-labels with a source-trained classifier. foc equation